当前位置:首页 » 图片资讯 » 一张图片如何做傅里叶变换
扩展阅读
美女健身跳河视频 2023-08-31 22:08:21
西方贵族美女照片真人 2023-08-31 22:08:15

一张图片如何做傅里叶变换

发布时间: 2022-10-29 07:48:38

‘壹’ 对图像进行傅里叶变换用什么软件

用MATLAB!

MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。

做二维傅里叶变换,用matlab直接把图像读进去然后用fft2函数变换就行了。

‘贰’ 如何用wps把图进行傅里叶变换

1.在页面布局下把纸张方向调为横向。
2.在章节下点击页眉页脚--图片--右击图片--设置对象格式--大小,取消锁定纵横比,高210,宽297(即A4纸大小),版式,选衬于文字下方,然后鼠标拖动使对齐页面。关闭页眉页脚。

‘叁’ 傅里叶变换

原文1
2

先说一个最直接的用途。把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。

再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。

可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。

如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。时域的基本单元就是“1秒”,如果我们将一个角频率为 的正弦波 看作基础,那么频域的基本单元就是

有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢? 就是一个周期无限长的正弦波,也就是一条直线! 所以在频域,0频率也被称为直流分量 ,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。

上一章的关键词是:从侧面看。这一章的关键词是:从下面看。

通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。 基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可 ,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。

在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。

注意到,相位谱中的相位除了0,就是 。因为 ,所以实际上相位为 的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于 ,所以相位差是周期的, 和 都是相同的相位。人为定义相位谱的值域为 ,所以图中的相位差均为 。

傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。
傅里叶变换是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。

虚数i我们只知道它是-1的平方根,可是它真正的意义是什么呢?

在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。

欧拉公式:
当x等于Pi的时候:
这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:

这里,我们可以用两种方法来理解正弦波:
第一种前面已经讲过了,就是螺旋线在实轴的投影。
另一种需要借助欧拉公式的另一种形式去理解:


将以上两式相加再除2,得到:

我们刚才讲过, 可以理解为一条逆时针旋转的螺旋线,那么 则可以理解为一条顺时针旋转的螺旋线。而 则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!

从代数上看,傅立叶级数就是通过三角函数和常数项来叠加逼近周期为 的函数

在“代数细节”一文中解释了,实际上是把 当作了如下基的向量:


是基1下的坐标, 是对应基的坐标
比如刚才提到的, 的方波 ,可以初略的写作:

‘肆’ 关于图片的傅里叶变换

图片中是没有时间概念的,但是有空间概念,不同的空间位置可以理解为 不同的时间差。 x(k),这里的k表示的是 灰度的差值,至于有没正负,你还是回去看书吧,忘记了。 频谱图和 原来的图像表示的是同一个信号,只是 表示的方法不一样了。u=1,v=1表示横纵灰度变化为1,f(u,v)表示 横纵灰度变化为u,v 的(也可以理解为二维 频率为u,v)三角波的幅值。

‘伍’ 傅里叶变换怎么用于图像处理如何与图像进行对应可以举个例子吗。。。

现在用的非常广泛的一种图像压缩方法JPEG(即拓展名为.jpg的图片)都是采用了将图像8X8分块再进行DCT变换的办法
DCT变换 级二维离散余弦变换,是傅里叶变换简化。
对于图像的傅里叶变换 因为图像是二维矩阵,所以有二维离散傅里叶变换和二维连续傅里叶变换
在matlab中也有对应的函数F1=fft2(I);
一般8X8的图像,DCT变换之后变成8X8的频谱图,左上角为直流分量,表示图像较为平滑没有太大变化的部分,其他为交流分量,右下为高频部分,对应图像中灰度数值变化比较快的部分
快断网了,如果还不清楚明天再说

‘陆’ matlab对图像分别进行一维傅里叶变换(先进行行变换,再进行列变换),请问程序如何编写

I0=zeros(256,256);
I0(120:130,100:156)=1;
subplot(2,3,1),imshow(I0),title('原始图像')
subplot(2,2,2),imshow(log(1+abs(fft2(I0)))),title('直接进行fft2')
I1=I0;
F1=fft(I1,[],1);%按列进行傅里叶变换
subplot(2,2,3),imshow(log(1+abs(F1))),title('先按列进行')
F2=fft(F1,[],2);%按行进行傅里叶变换
subplot(2,2,4),imshow(log(1+abs(F2))),title('后按行进行')

‘柒’ 图像傅里叶变换的步骤是什么 java

冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当考虑光时,讨论它的光谱或频率谱。同样, 傅立叶变换能通过频率成分来分析一个函数。


图像是两个参数的函数,通过一组正交函数的线性组合可以将其分解,而傅里叶就是通过谐波函数来分解的。而对于离散傅里叶变换,傅里叶变换的条件是存在的。

傅里叶变换进行图像处理有几个特点

1. 直流成分F(0,0)等于图像的平均值;

2. 能量频谱|F(u,v)|^2完全对称于原点;其中F=PfQ, f表示原图,P和Q都是对称的实正交矩阵,这个公式表示傅里叶变换就是个正交矩阵的正交变换

3.图像f平移(a,b)后,F只有exp[-2pij(au/M+bv/M)]的相位变化,能量频谱不发生变化。

4. 图像f自乘平均等于能量频谱的总和,f的分散等于能量频谱中除直流成分后的总和。

5.图像f(x,y)和g(x,y)的卷积h(x,y)=f(x,y)*g(x,y)的傅里叶变换H(u,v)等于f(x,y)和g(x,y)各自的傅里叶变换的乘积。

图像中的每个点通过傅里叶变换都成了谐波函数的组合,也就有了频率,这个频率则是在这一点上所有产生这个灰度的频率之和,也就是说傅里叶变换可以将这些频率分开来。当想除去图像背景时,只要去掉背景的频率就可以了。

在进行傅里叶变换时,实际上在某一特定的频率下,计算每个图像位置上的乘积。就是f(x,y)exp[-j2pi(ux+vy)],然后计算下一个频率。这样就得到了频率函数。

也就是说,看到傅里叶变换的每一项(对每对频率u,v,F(u,v)的值)是由f(x)函数所有值的和组成。f(x)的值与各种频率的正弦值和余弦值相乘。因此,频率u, v决定了变换的频率成分(x, y也作用于频率,但是它们相加,对频率有相同的贡献)。

通常在进行傅里叶变换之前用(-1)^(x+y)乘以输入的图像函数,这样就可以将傅里叶变换的原点F(0,0)移到(M/2,N/2)上。

每个F(u,v)项包含了被指数修正的f(x,y)的所有值,因而一般不可能建立图像特定分量和其变换之间的联系。然而,一般文献通常会有关于傅里叶变换的频率分量和图像空间特征之间联系的阐述。变换最慢的频率成分(u=v=0)对应一幅图像的平均灰度级。当从变换的原点移开时,低频对应着图像的慢变换分量,较高的频率开始对应图像中变化越来越快的灰度级。这些事物体的边缘和由灰度级的突发改变(如噪声)标志的图像成分。

在频率域中的滤波基础

1. (-1)^(x+y)乘以输入图像来进行中心变换

2. 由(1)计算图像的DFT, 即F(u,v)

3. 用滤波器函数H(u,v)乘以F(u,v)

4. 计算(3)中的结果的反DFT

5. 得到(4)中的结果的实部

6. 用(-1)^(x+y)乘以(5)中的结果


另外说明以下几点:
1、图像经过二维傅立叶变换后,其变换系数矩阵表明:
若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一幅图像能量集中低频区域。
2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)

‘捌’ matlab图像处理,对一幅图像做傅里叶变换,去掉细节部分留下轮廓部分,是去掉高频还是低频

图像的细节对应的是高频部分,轮廓对应的是图像的低频部分,所以要留下轮廓的话应该去掉高频,结果是图像被模糊了。主要就是使用一个频域滤波器滤除高频部分,对应的是图像处理知识中的频域滤波部分,建议搜一些相关资料,冈萨雷斯的《数字图像处理——matlab版》中就有相关知识的详细介绍,包括频域滤波原理和滤波器设计实例代码都很详细。

‘玖’ 如何将这个波形图片进行傅里叶分析

首先得说清楚 这是离散数据不是连续函数,如果是离散数据,直接将数据向量用fft后可得频谱信息,频谱信息就包括了你要的基波分量和谐波分量的关系。如果只有数据,没有知道采样频率,那么采样频率需要自己定的,比如采样频率是Fs、采样点数是sN,那么画图时频谱信息的横坐标的向量应该是-Fs/2:Fs/sN:Fs/2-Fs/sN,这就是离散傅里叶变换。如果给出的是连续函数,就用Matlab的符号变量进行傅里叶积分运算,得数学表达式再扫描出数据画图,得到的是傅里叶变换。以上是不分周期和非周期的简单说明