① 什么是合数合数有那些呢
合数是除了1和它本身还能被其他的正整数整除的正整数。
除2之外的偶数都是合数。(除0以外)
合数又名合成数,是满足以下任一(等价)条件的正整数:
是两个大于 1 的整数之乘积;
拥有某大于 1 而小于自身的因数(因子);
拥有至少三个因数(因子);
不是 1 也不是素数(质数);
有至少一个素因子的非素数。
类型:
合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。
以上内容参考:网络-合数
② 合数是什么
合数又名合成数,是满足以下任一(等价)条件的正整数:
1/是两个大于1 的整数之乘积;
2、拥有至少三个因数(因子);
3、有至少一个素因子的非素数。
4、两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。
注:"0"“1”既不是质数也不是合数。
合数列的经典题目选择题
256 ,216 ,64 ,9 ,1 ,( )
A.1/14 B.1/12 C.1/11 D.1/10
答案1/12
解析:
4的4次
6的3次
8的2次
9的1次
10的0次
考虑到4、6、8、9、10都是合数
故下一空应选B.1/12(10后面的合数是12)
合数数列的定义四川省三台县工商局王志成,无意中从网上发现“合数数列”这个术语。
立即给合数数列下了一个定义:在整数等差数列中,当首项,能够被公差或者公差分解出来的素因子整除时,除首项可以为素数外,其余项皆为合数。
在这种情况下,当首项是素数时,除首项外,其余的项为合数数列;当首项不是素数时,该数列就是合数数列。
除了2之外,所有的偶数都是合数。反之,除了2之外,所有的素数都是奇数。但是奇数包括了合数和素数。合数根和素数根的概念就是用来区分任何一个大于9的奇数属于合数还是素数。任何一个奇数都可以表示为2n+1(n是非0的自然数)。我们将n命名为数根。当2n+1属于合数时,我们称之为合数根;反之,当2n+1是素数时,我们称之为素数根。
规律:任何一个奇数,如果它是合数,都可以分解成两个奇数的乘积。设2n+1是一个合数,将它分解成两个奇数2a+1和2b+1的积(其中a、b都属于非0的自然数),则有
2n+1=(2a+1)(2b+1)=4ab+2(a+b)+1=2(2ab+a+b)+1
可见,任何一个合数根都可以表示为"2ab+a+b",反之,不能表示为"2ab+a+b"的数根,就称为素数根。由此可以得到合数根表。判断一个大奇数属于合数还是素数,只需在合数根表中查找是否存在它的数根就知道了。
③ 1合数是什么
一个自然数除了1和它本身两个因数外,还有其它因数,我们把这样的数叫合数。合数最少有两个因数。
④ 什么是合数合数有那些呢
1、除了1和它本身,还有其他因数的数,叫做合数。
2、合数有4、6、8、9、10、12……,也就是说最小的合数是4,没有最大的合数,合数有无数多个。
相关概念补充:
1、在整数除法中,商是整数,并且没有余数。我们就说被除数是除数的倍数,除数是被除数的因数。(小学阶段,因数和倍数是在除0以外的自然数范围内讨论的)
2、除了1和它本身,没有其他因数的数,叫做质数。
。一数若有着比它小的整数都还多的因数,则称此数为高合成数。另外,完全平方数的因数个数为奇数个,而其他的合数则皆为偶数个。
合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。
只有1和它本身两个因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个因数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)
100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,一共有25个。
质数的个数是无穷的。欧几里得的《几何原本》中的证明使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。
任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积,这里P1<P2<...<Pn是质数,其诸方幂ai是正整数。
这样的分解称为N的标准分解式。
算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。
算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。
此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念,更一般的还有戴德金理想分解定理。
⑤ 什么叫做合数
合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
相关说明
所有大于2的偶数都是合数。
所有大于5的奇数中,个位为5的都是合数。
除0以外,所有个位为0的自然数都是合数。
所有个位为4,6,8的自然数都是合数。
最小的(偶)合数为4,最小的奇合数为9。
每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。
⑥ 合数是什么意思
合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
所有大于2的偶数都是合数。
所有大于5的奇数中,个位为5的都是合数。
除0以外,所有个位为0的自然数都是合数。
所有个位为4,6,8的自然数都是合数。
最小的(偶)合数为4,最小的奇合数为9。
(6)合数是什么扩展阅读
算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。
算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。
此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念,更一般的还有戴德金理想分解定理。
⑦ 合数是什么
合数相对是质数
意思就是该数的约数,除了自己本身和1之外还有其他数
比如6的约数是1,2,3,6,则6是合数
而2的约数只有1和2本身,所以2是质数
⑧ 合数是什么
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
合数的性质
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。